
Privacy Preserving Access Control with Authentication
for Securing Data in Clouds

Sushmita Ruj∗, Milos Stojmenovic†, Amiya Nayak∗
∗SEECS, University of Ottawa, Canada – {sruj,anayak}@site.uottawa.ca

†Singidunum University, Belgrade, Serbia – mstojmenovic@singidunum.ac.rs

Abstract—In this paper, we propose a new privacy preserving
authenticated access control scheme for securing data in clouds.
In the proposed scheme, the cloud verifies the authenticity of the
user without knowing the user’s identity before storing information.
Our scheme also has the added feature of access control in which
only valid users are able to decrypt the stored information. The
scheme prevents replay attacks and supports creation, modification,
and reading data stored in the cloud. Moreover, our authentication
and access control scheme is decentralized and robust, unlike other
access control schemes designed for clouds which are centralized. The
communication, computation, and storage overheads are comparable
to centralized approaches.
Keywords: Access control, Authentication, Attribute-based sig-

natures, Attribute-based encryption, Cloud storage.

I. INTRODUCTION
Research in cloud computing is receiving a lot of attention

from both academic and industrial worlds. In cloud computing,
users can outsource their computation and storage to servers (also
called clouds) using Internet. This frees users from the hassles of
maintaining resources on-site. Clouds can provide several types of
services like applications (e.g., Google Apps, Microsoft online),
infrastructures (e.g., Amazon’s EC2, Eucalyptus, Nimbus), and
platforms to help developers write applications (e.g., Amazon’s
S3, Windows Azure).
Since services are outsourced to a remote server, security and

privacy are of immense concern in cloud computing. In one hand,
the user should authenticate itself before initiating any transaction,
and on the other hand, it must be ensured that the cloud does
not tamper with the data that is outsourced. User privacy is also
required so that the cloud or other users do not know the identity
of the user. The cloud can hold the user accountable for the data
it outsources, and likewise, the cloud is itself accountable for the
services it provides. The validity of the user who stores the data is
also verified. Apart from the technical solutions to ensure security
and privacy, there is also a need for law enforcement.
Efficient search is also an important concern in clouds. The

clouds should not know the query but should be able to return
the records that satisfy the query. This is achieved by means of
searchable encryption [1], [2]. The keywords are sent to the cloud
encrypted, and the cloud returns the result without knowing the
actual keyword for the search. The problem here is that the data
records should have keywords associated with them to enable the
search. The correct records are returned only when searched with
the exact keywords.
Security and privacy protection in clouds are being explored

by many researchers. Authentication of users using public key
cryptographic techniques has been studied in [3]. Many homo-
morphic encryption techniques have been suggested [4], [5] to

ensure that the cloud is not able to read the data while performing
computations on them. Using homomorphic encryption, the cloud
receives ciphertext of the data and performs computations on the
ciphertext and returns the encoded value of the result. The user is
able to decode the result, but the cloud does not know what data
it has operated on. In such circumstances, it must be possible for
the user to verify that the cloud returns correct results. The other
closely related problem is that of code obfuscation [6], in which
the user sends the code in an encoded form, and the cloud can
execute the code and returns the result without knowing the actual
code.
Accountability of clouds is a very challenging task and involves

technical issues and law enforcement. Neither clouds nor users
should deny any operations performed or requested. It is important
to have log of the transactions performed; however, it is an
important concern to decide how much of information to keep
in the log. Accountability has been addressed in TrustCloud [7].
Let us now consider the following situation. Suppose a Law

student, Alice, wants to send a series of reports about some
malpractices by authorities of University X to all the professors of
University X , Research chairs of universities in the country, and
students belonging to Law department in all universities in the
province. She wants to remain anonymous while publishing all
evidence of malpractice. She stores the information in the cloud.
Access control is important in such case, so that only authorized
users can access the data. It is also important to verify that the
information comes from a reliable source. The problems of access
control, authentication, and privacy protection should be solved
simultaneously. We address this problem in entirety in this paper.
Access control in clouds is gaining attention because it is

important that only authorized users have access to valid service.
A huge amount of information is being stored in the cloud, and
much of this is sensitive information. Care should be taken to
ensure access control of this sensitive information which can often
be related to health, important documents (as in Google Docs or
Dropbox) or even personal information (as in social networking).
There are broadly three types of access control: User Based
Access Control (UBAC), Role Based Access Control (RBAC), and
Attribute Based Access Control (ABAC). In UBAC, the access
control list (ACL) contains the list of users who are authorized to
access data. This is not feasible in clouds where there are many
users. In RBAC (introduced by [8]), users are classified based on
their individual roles. Data can be accessed by users who have
matching roles. The roles are defined by the system. For example,
only faculty members and senior secretaries might have access to
data but not the junior secretaries. The ABAC is more extended
in scope, in which users are given attributes, and the data has

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 Crown Copyright

DOI 10.1109/CCGrid.2012.92

556

attached access policy. Only users with valid set of attributes,
satisfying the access policy, can access the data. For instance, in
the above example certain records might be accessible by faculty
members with more than 10 years of research experience or by
senior secretaries with more than 8 years experience. The pros and
cons of RBAC and ABAC are discussed in [9]. There has been
some work on ABAC in clouds (for example, [10], [11], [12],
[13], [14]). All these work use a cryptographic primitive known
as Attribute Based Encryption (ABE).
An area where access control is widely being used is health

care. Clouds are being used to store sensitive information about
patients to enable access to medical professionals, hospital staff,
researchers, and policy makers. It is important to control the
access of data so that only authorized users can access the data.
Using ABE, the records are encrypted under some access policy
and stored in the cloud. Users are given sets of attributes and
corresponding keys. Only when the users have matching set of
attributes, can they decrypt the information stored in the cloud.
Access control in health care has been studied in [10], [11].
Access control is also gaining importance in online social net-

working where users (members) store their personal information,
pictures, videos and share them with selected groups of users
or communities they belong to. Access control in online social
networking has been studied in [15]. Such data are being stored
in clouds. It is very important that only the authorized users are
given access to those information. A similar situation arises when
data is stored in clouds, for example in Dropbox, and shared with
certain groups of people.
It is just not enough to store the contents securely in the cloud

but it might also be necessary to ensure anonymity of the user.
For example, a user would like to store some sensitive information
but does not want to be recognized. However, the user should be
able to prove to the other users that he/she is a valid user who
stored the information without revealing the identity. There are
cryptographic protocols like ring signatures [16], mesh signatures
[17], group signatures [18], which can be used in these situations.
Ring signature is not a feasible option for clouds where there
are a large number of users. Group signatures assume the pre-
existence of a group which might not be possible in clouds. Mesh
signatures do not ensure if the message is from a single user or
many users colluding together. For these reasons, a new protocol
known as Attribute Based Signature (ABS) has been applied. ABS
was proposed by Maji et al. [19]. In ABS, users have a claim
predicate associated with a message. The claim predicate helps
to identify the user as an authorized one, without revealing its
identity. Other users or the cloud can verify the user and the
validity of the message stored. ABS can be combined with ABE to
achieve authenticated access control without disclosing the identity
of the user to the cloud.
Existing work [29], [10], [11], [12], [13], [14] on access control

in cloud are centralized in nature. Except [29], all other schemes
use attribute based encryption (ABE). The scheme in [29] uses
a symmetric key approach and does not support authentication.
The schemes [10], [11], [14] do not support authentication as
well. Earlier work by Zhao et al. [13] provides privacy preserving
authenticated access control in cloud. However, the authors take a
centralized approach where a single key distribution center (KDC)

distributes secret keys and attributes to all users. Unfortunately, a
single KDC is not only a single point of failure but difficult to
maintain because of the large number of users that are supported in
a cloud environment. We, therefore, emphasize that clouds should
take a decentralized approach while distributing secret keys and
attributes to users. It is also quite natural for clouds to have many
KDCs in different locations in the world. In an earlier work, Ruj
et al. [14] proposed a distributed access control mechanism in
clouds. However, the scheme did not provide user authentication.
The other drawback was that an user can create and store a file and
other users can only read the file. Write access was not permitted
to users other than the creator. In this paper, we extend their work
with added features which enable to authenticate the validity of the
message without revealing the identity of the user who has stored
information in the cloud. We use attribute based signature scheme
[20] to achieve authenticity and privacy. Unlike [20], our scheme
is resistant to replay attacks, in which an user can replace fresh
data with stale data from a previous write, even if it no longer
has valid claim policy. This is an important property because an
user, revoked of its attributes, might no longer be able to write to
the cloud. We therefore add this extra feature in our scheme and
modify [20] appropriately. Our scheme also allows multiple writes
which was not permitted by [14].

A. Our Contributions

The main contributions of this paper are the following:

1) Distributed access control of data stored in cloud so that
only authorized users with valid attributes can access them.

2) Authentication of users who store and modify their informa-
tion of the cloud.

3) The identity of the user is protected from the cloud during
authentication.

4) The architecture is decentralized, meaning that there can be
several KDCs for key management.

5) The access control and authentication are both collision
resistant, meaning that no two users can collude and access
data or authenticate themselves, if they are individually not
authorized.

6) The proposed scheme is resilient to replay attacks. A writer
whose attributes and keys have been revoked cannot write
back stale information.

7) The protocol supports multiple read and write on the data
stored in the cloud.

8) The costs are comparable to the existing centralized ap-
proaches, and the expensive operations are mostly done by
the cloud.

B. Organization

The paper is organized as follows. Related work is presented
in Section II. The mathematical background and assumptions are
detailed in Section III. We present our privacy preserving access
control scheme in Section IV followed by a real life example in
Section V. The security is analyzed in Section VI. Computation
complexity is discussed in Section VII, and comparison with other
work is presented in Section VIII. We conclude in Section IX.

557

II. RELATED WORK
ABE was proposed by Sahai and Waters [21]. In ABE, an user

has a set of attributes in addition to its unique ID. There are two
classes of ABEs. In Key-policy ABE or KP-ABE (Goyal et al[22]),
the sender has an access policy to encrypt data. A writer whose
attributes and keys have been revoked cannot write back stale
information. The receiver receives attributes and secret keys from
the attribute authority and is able to decrypt information if it has
matching attributes. In Ciphertext-policy, CP-ABE (Bethencourt
et al. [23]), the receiver has the access policy in the form of a
tree, with attributes as leaves and monotonic access structure with
AND, OR and other threshold gates.
All the approaches take a centralized approach and allow only

one KDC, which is a single point of failure. Chase [24] proposed
a multi-authority ABE, in which there are several KDC authorities
(coordinated by a trusted authority) which distribute attributes
and secret keys to users. Chase and Chow [25] devised a multi-
authority ABE protocol which required no trusted authority which
requires every user to have attributes from at all the KDCs.
Recently, Lewko and Waters [26] proposed a fully decentralized
ABE where users could have zero or more attributes from each
authority and did not require a trusted server.
All these approaches had no way to authenticate users. To ensure

user authentication Attribute Based Signatures were introduced by
Maji et al. [19]. This was also a centralized approach. A recent
scheme by the same authors [20] takes a decentralized approach
and provides authentication without disclosing the identity of the
users. However, as mentioned earlier in the previous section it is
prone to replay attack.

III. BACKGROUND
In this section, we present our cloud storage model and the

assumptions we have made in the paper. Table I presents the no-
tations used throughout the paper. We also describe mathematical
background used in our proposed solution.

A. Assumptions
We make the following assumptions in our work.
1) The cloud is honest and curious, which means that the cloud
administrators can be interested in viewing user’s content,
but cannot modify it. This is a valid assumption that has
been made in [10], [11].

2) Users can have either read or write or both accesses to a file
stored in the cloud.

3) All communications between users/clouds are secured by
Secure Shell Protocol, SSH.

B. Formats of access policies
Access policies can be in any of the following formats: 1)

Boolean functions of attributes, 2) Linear Secret Sharing Scheme
(LSSS) matrix, or 3) Monotone span programs. Any access struc-
ture can be converted into a Boolean function [26]. An example
of a Boolean function is ((a1 ∧ a2 ∧ a3)∨ (a4 ∧ a5))∧ (a6 ∨ a7)),
where a1, a2, . . . , a7 are attributes. Boolean functions can also
be represented by access tree, with attributes at the leaves and
AND(∧) and OR(∨) as the intermediate nodes and root. Boolean
functions can be converted to LSSS matrix as presented in [14].
We do not present it here due to lack of space.

TABLE I
NOTATIONS

Symbols Meanings
Uu u-th User/Owner
Aj j-th KDC
A Set of KDCs
Lj Set of attributes that KDC Aj possesses

lj = |Lj | Number of attributes that KDC Aj possesses
I[j, u] Set of attributes that Aj gives to user Uu

for encryption/decryption
Iu Set of attributes that user Uu possesses

J [j, u] Set of attributes that Aj gives to user Uu

for claim attributes
Ju Set of attributes that user Uu possesses

as claim attributes
AT [j] KDC which has attribute j

PK[j]/SK[j] Public key/secret key of KDC Aj

for encryption/decryption
ski,u Secret key given by Aj corresponding to attribute i

given to user Uu

TPK/PSK Trustee public key/secret key
APK[j]/ASK[j] Public key/secret key of KDC Aj

for verifying claim
X Boolean access structure
Y Claim policy
τ Time instant
R Access matrix of dimension m × h
M Matrix of dimension l× t corresponding

to the claim predicate
MSG Message
|MSG| Size of message MSG

C Ciphertext
H,H Hash functions, example SHA-1
Ex Exponentiation in group Gx

τH Time to hash using function H
τH Time to hash using function H

τP /τ
P̂

Time taken to perform 1 pairing operation in e/ê
|G| Size of group G

Let Y : {0, 1}n → {0, 1} be a monotone Boolean function [20].
A monotone span program for Y over a field F is an l× t matrix
M with entries in F, along with a labeling function a : [l] → [n]
that associates each row of M with an input variable of , that, for
every (x1, x2 . . . , xn) ∈ {0, 1}

n , satisfies the following:

Y(x1, x2, . . . , xn) = 1⇔ ∃v ∈ F
1×l : vM = [1, 0, 0, . . . , 0]

and (∀i : xa(i) = 0⇒ vi = 0)

In other words, Y(x1, x2, . . . , xn) = 1 if and only if the rows of
M indexed by {i|xa(i) = 1} span the vector [1, 0, 0, . . . , 0]. Span
programs can be constructed from Boolean functions in a similar
way as shown later in Section V.

C. Mathematical background
We will use bilinear pairings on elliptic curves. Let G be a

cyclic group of prime order q generated by g. Let GT be a group
of order q. We can define the map e : G × G → GT . The map
satisfies the following properties:
1) e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zq ,

Zq = {0, 1, 2, . . . , q − 1}.
2) Non-degenerate: e(g, g)
= 1.
Bilinear pairing on elliptic curves groups are used. We do not

discuss the pairing functions which mainly use Weil and Tate
pairings [27] and computed using Miller’s algorithm. The choice
of curve is an important consideration because it determines the
complexity of pairing operations.

558

PBC library (Pairing Based Cryptography) [27] is a C library
which is built above GNU GMP (GNU Math Precision) library
and contains functions to implement elliptic curves and pairing
operations. The curves chosen are either MNT curves or supersin-
gular curves. Considering the requirements, elliptic curve group
of size 159, with an embedding degree 6 (type d curves of PBC
[27]) can be used. Pairing takes 14 ms on Intel Pentium D, 3.0GHz
CPU [14]. Such operations are very suitable for a cloud computing
environment. A new library for attribute based encryption is also
available at [28].

D. Attribute based encryption
Attribute based encryption with multiple authorities as proposed

by Lewko and Waters [26] proceeds as follows [14]:
1) System Initialization: Select a prime q, generator g of G0,

groups G0 and GT of order q, a map e : G0 ×G0 → GT , and a
hash functionH : {0, 1}∗ → G0 which maps the identities of users
to G0. The hash function used here is SHA-1. Each KDC Aj ∈ A
has a set of attributes Lj . The attributes disjoint (Li

⋂
Lj = φ for

i
= j). Each KDC also chooses two random exponents αi, yi ∈ Zq .
The secret key of KDC Aj is

SK[j] = {αi, yi, i ∈ Lj}. (1)

The public key of KDC Aj is published:

PK[j] = {e(g, g)αi , gyi, i ∈ Lj}. (2)

2) Key generation and distribution by KDCs: User Uu receives
a set of attributes I[j, u] from KDC Aj , and corresponding secret
key ski,u for each i ∈ I[j, u]

ski,u = gαiH(u)yi , (3)

where αi, yi ∈ SK[j]. Note that all keys are delivered to the user
securely using the user’s public key, such that only that user can
decrypt it using its secret key.
3) Encryption by sender: The encryption function is

ABE.Encrypt(MSG,X). Sender decides about the access
tree X . LSSS matrix R can be derived as described in III-B.
Sender encrypts message MSG as follows:
1) Choose a random seed s ∈ Zq and a random vector v ∈ Z

h
q ,

with s as its first entry; h is the number of leaves in the
access tree (equal to the number of rows in the corresponding
matrix R).

2) Calculate λx = Rx · v, where Rx is a row of R.
3) Choose a random vector w ∈ Z

h
q with 0 as the first entry.

4) Calculate ωx = Rx · w.
5) For each row Rx of R, choose a random ρx ∈ Zq .
6) The following parameters are calculated:

C0 = MSGe(g, g)s

C1,x = e(g, g)λxe(g, g)απ(x)ρx , ∀x
C2,x = gρx∀x
C3,x = gyπ(x)ρxgωx∀x,

(4)

where π(x) is mapping from Rx to the attribute i that is
located at the corresponding leaf of the access tree.

7) The ciphertext C is sent by the sender (it also includes the
access tree via R matrix):

C = 〈R, π, C0, {C1,x, C2,x, C3,x, ∀x}〉. (5)

4) Decryption by receiver: The decryption function is
ABE.Decrypt(C, {ski,u}), where C is given by equation (13).
Receiver Uu takes as input ciphertext C, secret keys {ski,u}, group
G0, and outputs message msg. It obtains the access matrix R and
mapping π from C. It then executes the following steps:
1) Uu calculates the set of attributes {π(x) : x ∈ X}

⋂
Iu that

are common to itself and the access matrix. X is the set of
rows of R.

2) For each of these attributes, it checks if there is a subset
X ′ of rows of R, such that the vector (1, 0 . . . , 0) is their
linear combination. If not, decryption is impossible. If yes,
it calculates constants cx ∈ Zq , such that

∑
x∈X′ cxRx =

(1, 0, . . . , 0).
3) Decryption proceeds as follows:

a) For each x ∈ X ′, dec(x) = C1,xe(H(u),C3,x)
e(skπ(x),u,C2,x)

b) Uu computes MSG = C0/Πx∈X′dec(x).

E. Attribute based signature scheme
Attribute based signature scheme [20] has the following steps.
1) System Initialization: Select a prime q, and groups G1 and

G2, which are of order q. We define the mapping ê : G1 ×G1 →
G2. Let g1, g2 be generators of G1 and hj be generators of G2,
for j ∈ [tmax], for arbitrary tmax. Let H be a hash function. Let
A0 = ha0

0 , where a0 ∈ Z
∗
q is chosen at random. (TSig, TV er)

mean TSig is the private key with which a message is signed
and TV er is the public key used for verification. The secret key
for the trustee is TSK = (a0, TSig) and public key is TPK =
(G1, G2,H, g1, A0, h0, h1, . . . , htmax

, g2, TV er).
2) User registration: For an user with identity Uu the KDC

draws at random Kbase ∈ G. Let K0 = K
1/a0

base . The following
token γ is output

γ = (u,Kbase, K0, ρ), (6)

where ρ is signature on u||Kbase using the signing key TSig.
3) KDC setup: Choose a, b ∈ Z

∗
q randomly and compute:

Aij = ha
j , Bij = hb

j , for Ai ∈ A, j ∈ [tmax]. The private
key of i-th KDC is ASK[i] = (a, b) and public key APK[i] =
(Aij , Bij |j ∈ [tmax]).
4) Attribute generation: The token verification algorithm ver-

ifies the signature contained in γ using the signature verifica-
tion key TV er in TPK . This algorithm extracts Kbase from
γ using (a, b) from ASK[i] and computes Kx = K

1/(a+bx)
base ,

x ∈ J [i, u]. The key Kx can be checked for consistency using al-
gorithm ABS.KeyCheck(TPK,APK[i], γ,Kx), which checks
ê(Kx, AijB

x
ij) = ê(Kbase, hj), for all x ∈ J [i, u] and j ∈ [tmax].

5) Sign: The algorithm ABS.Sign(TPK, {APK[i] : i ∈
AT [u]}, γ, {Kx : x ∈ Ju},MSG,Y), has input the public key of
the trustee, the secret key of the signer, the message to be signed
and the policy claim Y . The policy claim is first converted into
the span program M ∈ Z

l×t
q , with rows labeled with attributes.

Mx denotes row x of M . Let π′ denote the mapping from
rows to the attributes. So, π′(x) is the mapping from Mx to
attribute x. A vector v is computed which satisfies the assignment
{x : x ∈ J [i, u]}. Compute μ = H(MSG||Y). Choose r0 ∈ Z

∗
q

and ri ∈ Zq, i ∈ Ju, and compute:

Y = Kr0
base,Si = (Kvi

i)r0 .(g2g
μ
1)

ri(∀i ∈ Ju) (7)

W = Kr0
0 ,Pj = Πi∈AT [u](AijB

π′(i)
ij)Mijri(∀j ∈ [t]) (8)

559

The signature is calculated as

σ = (Y,W, S1, S2, . . . , St, P1, P2, . . . , Pt). (9)

6) Verify: Algorithm ABS.V erify(TPK ,
σ = (Y,W, S1, S2, . . . , St, P1, P2, . . . , Pt),MSG,Y),
converts Y to the corresponding monotone program M ∈ Z

l×t
q ,

with rows labeled with attributes. Compute μ = H(MSG||Y). If
Y = 1, ABS.V erify = 0 meaning false. Otherwise, the following
constraints are checked.

ê(W,A0)
?
= ê(Y, h0) (10)

Πi∈lê(Si, Ai′jB
π′(i)
i′j)Mij)

?
=

{
ê(Y, h1)ê(g2g

μ
1 , P1), j = 1

ê(g2g
μ
1 , Pj), j > 1,

(11)

where i′ = AT [i].

���
����

�
�

�

�����

Fig. 1. Our secure cloud storage model

IV. PROPOSED PRIVACY PRESERVING AUTHENTICATED
ACCESS CONTROL SCHEME

In this section we propose our privacy preserving authenticated
access control scheme. According to our scheme an user can create
a file and store it securely in the cloud. This scheme consists of
use of the two protocols ABE and ABS, as discussed in Section
III-D and III-E respectively. We will first discuss our scheme in
details and then provide a concrete example to demonstrate how
it works. We refer to the Fig. 1. There are three users, a creator, a
reader and writer. Creator Alice receives a token γ from the trustee,
who is assumed to be honest. A trustee can be someone like the
federal government who manages social insurance numbers etc. On
presenting her id (like health/social insurance number), the trustee
gives her a token γ. There are multiple KDCs (here 2), which can
be scattered. For example, these can be servers in different parts
of the world. A creator on presenting the token to one or more
KDCs receives keys for encryption/decryption and signing. In the
Fig. 1, SKs are secret keys given for decryption, Kx are keys for
signing. The message MSG is encrypted under the access policy
X . The access policy decides who can access the data stored in
the cloud. The creator decides on a claim policy Y , to prove her
authenticity and signs the message under this claim. The ciphertext
C with signature is c, and is sent to the cloud. The cloud verifies

the signature and stores the ciphertext C. When a reader wants to
read, the cloud sends C. If the user has attributes matching with
access policy, it can decrypt and get back original message.
Write proceeds in the same way as file creation. By designating

the verification process to the cloud, it relieves the individual users
from time consuming verifications. When a reader wants to read
some data stored in the cloud, it tries to decrypt it using the
secret keys it receives from the KDCs. If it has enough attributes
matching with the access policy, then it decrypts the information
stored in the cloud.

A. Data storage in clouds

An user Uu first registers itself with one or more trustees. For
simplicity we assume there is one trustee. The trustee gives it a
token γ = (u,Kbase, K0, ρ), where ρ is the signature on u||Kbase

signed with the trustees private key TSig (By Equation 6). The
KDCs are given keys PK[i], SK[i] for encryption/decryption and
ASK[i], APK[i] for signing/verifying. The user on presenting this
token obtains attributes and secret keys from one or more KDCs.
A key for an attribute x belonging to KDC Ai is calculated as
Kx = K

1/(a+bx)
base , where (a, b) ∈ ASK[i]. The user also receives

secret keys skx,u for encrypting messages. The user then creates
an access policy X which is a monotone Boolean function. The
message is then encrypted under the access policy as

C = ABE.Encrypt(MSG,X) (12)

The user also constructs a claim policy Y to enable the cloud
to authenticate the user. The creator does not send the message
MSG as is, but uses the time stamp τ and creates H(C)||τ . This
is done to prevent replay attacks. If the time stamp is not sent,
then the user can write previous stale message back to the cloud
with a valid signature, even when its claim policy and attributes
have been revoked. The original work by Maji et al. [20] suffers
from replay attacks. In their scheme, a writer can send its message
and correct signature even when it no longer has access rights. In
our scheme a writer whose rights have been revoked cannot create
a new signature with new time stamp and thus cannot write back
stale information. It then signs the message and calculates the
message signature as

σ = ABS.Sign(Public key of trustee, Public key of KDCs,
token, signing key, message, access claim)

The following information is then sent in the cloud.

c = (C, τ, σ,Y). (13)

The cloud on receiving the information verifies the access claim
using the algorithm ABS.verify. The creator checks the value of
V = ABS.V erify(TPK, σ, c,Y). If V = 0, then authentication
has failed and the message is discarded. Else, the message (C, τ)
is stored in the cloud.

B. Reading from the cloud

When an user requests data from the cloud, the cloud sends
the ciphertext C using SSH protocol. Decryption proceeds using
algorithm ABE.Decrypt(C, {ski,u}) and the message MSG is
calculated as given in Section III-D4.

560

C. Writing to the cloud
To write to an already existing file, the user must send its

message with the claim policy as done during file creation. The
cloud verifies the claim policy, and only if the user is authentic,
is allowed to write on the file.

Fig. 2. Example of claim policy

V. REAL LIFE EXAMPLE

We now revisit the problem we stated in the introduction. We
will use a relaxed setting. Suppose Alice is a Law student and
wants to send a series of reports about malpractices by authorities
of University X to all the professors of University X , Research
chairs of universities X,Y, Z and students belonging to Law
department in university X . She wants to remain anonymous,
while publishing all evidence. All information is stored in the
cloud. It is important that users should not be able to know her
identity, but must trust that the information is from a valid source.
For this reason she also sends a claim message which states that
she “Is a law student” or “Is a student counselor” or “Professor
at university X”. The tree corresponding to the claim policy is
shown in Figure 2.
The leaves of the tree consists of attributes and the intermediary

nodes consists of Boolean operators. In this example the attributes
are “Student”, “Prof”, “Dept Law”, “Uni X”, “Counselor”. The
above claim policy can be written as a Boolean function of
attributes as

((Student AND Dept Law) OR (Prof AND Uni X)) OR (Student
Counselor).

Using the algorithm given in [14], the span program for this
policy is

M =

⎛
⎜⎜⎜⎜⎝
1 1
0 −1
1 1
0 −1
1 0

⎞
⎟⎟⎟⎟⎠.

An assignment v = (v1, v2, v3, v4, v5) satisfies this span program
if vM = (1, 0).
The cloud should verify that Alice indeed satisfies this claim.

Since she is a Law student, v = (1, 1, 0, 0, 0) and is a valid
assignment. As a valid user she can then store all the encrypted
records under the set of access policy that she has decided. The
access policy in case of Alice is

((Prof AND Uni. X) OR
(Research Chair AND ((Uni X OR Uni Y) OR Uni Z)) OR

((Student AND Dept Law)AND Uni X)

Later when a valid user, say Bob wants to modify any of these
reports he also attaches a set of claims which the cloud verifies.
For example, Bob is a research chair and might send a claim
“Research chair” or “Department head” which is then verified by
the cloud. It then sends the encrypted data to the Bob. Since Bob
is a valid user and has matching attributes, he can decrypt and get
back the information.
If Bob wants to read the contents without modifying them, then

there is no need to attach a claim. He will be able to decrypt only
if he is a Professor in University X or a Research chair in one of
the universities X,Y, Z or a student belonging to Department of
Law in university X .
Here it is to be noted that the attributes can belong to several

KDCs. For example the Professors belonging to university X have
credentials given by the university X , and a Ph. D. degree from
a University P, the student counselor might be a psychologist au-
thorized by the Canadian Psychological Association and assigned
an employee number by a university, the research chairs can be
jointly appointed by the universities X , Y , Z and the government.
The students can have credentials from the university and also a
department.
Initially Alice goes to a trustee for example the Canadian health

service and presents her a health insurance number or federal
agency presents her a social insurance number. Either or both
of these trustees can give her token(s) γ = (u,Kbase, K0, ρ).
With the token she approaches the KDCs in the university X
and department D and obtains the secret keys for decryption and
for keys Kx and Ky for signing the assess policy. She can also
access the public keys APK[i] of other KDCs. The entire process
is carried on in the following way:

A. Data Storage in clouds
Let the data be denoted by MSG, X is the access policy-

((Prof AND Uni. X) OR
(Research Chair AND ((Uni X OR Uni Y) OR Uni Z)) OR

((Student AND Dept Law)AND Uni X)

Alice encrypts the data and obtains the ciphertext

C = Enc(MSG,X).

Alice also decides on a claim policy Y which is shown in
Figure 2. From the matrix, v = (1, 1, 0, 0, 0) can be calculated.
The values of Y,W, S1, S2, S3, S4, S5, P1, P2 can be calculated.
μ = H(MSG||Y). The current time stamp τ is attached to the
ciphertext to prevent replay attacks. The signature σ is calculated
as ABS.Sign. The ciphertext

c = (C, τ, σ,Y)

is then send to the cloud. The cloud verifies the signature using the
functionABS.V erify as given in Equation (11). If Alice has valid
credentials then the ciphertext (C, τ) is stored, else it is discarded.

B. Reading from the cloud and modifying data
Suppose Bob wants to access the records stored by Alice. Bob

then decrypts the message MSG using his secret keys using

561

function ABE.Decrypt. Writing proceeds like file creation. It is
to be noted that the time τ is added to the data so that even if
Bob’s credentials are revoked, he cannot write stale data in the
cloud.

VI. SECURITY OF THE PROTOCOL
In this section we will prove the security of the protocol. We

will show that our scheme authenticates an user who wants to
write to the cloud. An user can only write provided the cloud is
able to validate its access claim. An invalid user cannot receive
attributes from a KDC, if it does not have the credentials from the
trustee. If an user’s credentials are revoked, then it cannot replace
data with previous stale data, thus preventing replay attacks.
Theorem 1: Our authentication scheme is correct, collusion

secure, resistant to replay attacks, and protects privacy of the user.
Proof: We first note that only valid users registered with the

trustee(s) receive attributes and keys from the KDCs. An user’s
token is γ = (u,Kbase, K0, ρ), where ρ is signature on u||Kbase

with TSig belonging to the trustee. An invalid user with a different
user-id cannot create the same signature because it does not know
TSig.
We next show that only a valid user with valid access claim is

only able to store the message in the cloud. This follows from the
functions ABS.Sign and ABS.V erify given in Section III-E. An
user who wants to create a file and tries to make a false access
claim, cannot do so, because it will not have attribute keys Kx

from the related KDCs. At the same time since the message is
encrypted, an user without valid access policy cannot decrypt and
change the information.
Two users cannot collude and create an access policy consisting

of attributes shared between them. Suppose, there are two users
A and B who have attributes xA and xB respectively. They
have the following information KbaseA , KxA

and KbaseB , KxB
,

respectively. A new value of KxB
= K

1/(a+bx′)
baseA

cannot be
calculated by B, because it does not know the values of (a, b).
Thus the authentication is collusion secure.
Our scheme is resistant to replay attacks. If a writer’s access

claims are revoked, it cannot replace a data with stale information
from previous writes. This is because it has to attach a new time
stamp τ and sign the message H(C)||τ again. Since it does not
have attributes, it cannot have a valid signature.

VII. COMPUTATION COMPLEXITY
In this section we present the computation complexity of the

privacy preserving access control protocol. We will calculate the
computations required by users (creator, reader, writer) and that
by the cloud.
The creator needs to encrypt the message and sign it. Cre-

ator needs to calculate one pairing e(g, g). Encryption takes 2
exponentiations to calculate each of C1,x. So this requires 2mET

time, where m is the number of attributes. User needs to calculate
3 exponentiation to calculate C2,x and C3,x. So time taken for
encryption is (3m + 1)E0 + 2mET + τP . To sign the message,
Y,W, S′

is and Pjs have to be calculated as well as H(C). So, time
taken to sign is (2l+ 2)E1 + 2tE2 + τH.
The cloud needs to verify the signature. This requires checking

for equation (11). Time taken to verify is (l + 2t)τP̂ + l(E1 +

E2) + τH. To read, an user needs only to decrypt the cipher-
text. This requires 2m pairings to calculate e(H(u), C3,x) and
e(skπ(x),u, C2,x) and O(mh) to find the vector c. Decryption takes
2mτP + τH + O(mh). Writing is similar to creating a record.
The size of ciphertext with signature is 2m|G0|+m|GT |+m2 +
|MSG|+ (l + t+ 2)|G1|.
We will compare our computation costs with existing schemes

like [11], [10], [13] in next Section VIII.

VIII. COMPARISON WITH OTHER ACCESS CONTROL SCHEMES
IN CLOUD

We compare our scheme with other access control schemes (in
Table II) and show that our scheme supports many features that the
other schemes did not support. 1-W-M-R means that only one user
can write while many users can read. M-W-M-R means that many
users can write and read. We see that most schemes do not support
many writes which is supported by our scheme. Our scheme is
robust and decentralized, most of the others are centralized. Our
scheme also supports privacy preserving authentication, which is
not supported by others. In Tables III and IV we compare the
computation and communication costs incurred by the users and
clouds and show that our distributed approach has comparable
costs to centralized approaches. The most expensive operations
involving pairings and is done by the cloud. If we compare the
computation load of user during read we see that our scheme has
comparable costs. Our scheme also compares well with the other
authenticated scheme of [13].

IX. CONCLUSION
We present a privacy preserving access control scheme for

clouds. Our scheme not only provides fine-grained access control
but also authenticates users who store information in the cloud. The
cloud however does not know the identity of the user who stores
information, but only verify the user’s credentials. Key distribution
is done in a decentralized way. One limitation is that the cloud
knows the access policy for each record stored in the cloud. In
future, we would like to protect the privacy of user attributes as
well.

ACKNOWLEDGEMENT
This work is partially supported by NSERC Grant

CRDPJ386874-09 and This work was partially supported
by the following grant: ”Digital signal processing, and the
synthesis of an information security system”, TR32054, Serbian
Ministry of Science and Education.

REFERENCES
[1] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword

search over encrypted data in cloud computing,” in IEEE INFOCOM. 2010,
pp. 441–445.

[2] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Financial
Cryptography Workshops, ser. Lecture Notes in Computer Science, vol. 6054.
Springer, 2010, pp. 136–149.

[3] H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-based authentication for cloud
computing,” in CloudCom, ser. Lecture Notes in Computer Science, vol. 5931.
Springer, 2009, pp. 157–166.

[4] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation,
Stanford University, 2009, http://www.crypto.stanford.edu/craig.

[5] A.-R. Sadeghi, T. Schneider, and M. Winandy, “Token-based cloud comput-
ing,” in TRUST, ser. Lecture Notes in Computer Science, vol. 6101. Springer,
2010, pp. 417–429.

562

TABLE II
COMPARISON OF OUR SCHEME WITH EXISTING ACCESS CONTROL SCHEMES

Schemes Fine-grained Centralized/ Write/read Type of Privacy preserving
access control Decentralized access access control authentication

[29] Yes Centralized 1-W-M-R Symmetric key cryptography No authentication
[10] Yes Centralized 1-W-M-R ABE No authentication
[11] Yes Centralized 1-W-M-R ABE No authentication
[14] Yes Decentralized 1-W-M-R ABE No authentication
[13] Yes Centralized M-W-M-R ABE Authentication
Ours Yes Decentralized M-W-M-R ABE Authentication

TABLE III
COMPARISON OF COMPUTATION AND SIZE OF CIPHERTEXT WHILE CREATING A FILE

Schemes Computation by creator Computation by cloud Size of ciphertext
[10] (m+ 2)E0 0 m log |G0|+ |GT |+m logm+ |MSG|
[11] (m+ 2)E0 0 m log |G0|+ |G1|+ |MSG|
[14] (3m+ 1)E0 + 2mET + τP (encrypt) 0 2m|G0|+m|GT |+m

2 + |MSG|
[13] E1 + (2m+ 1)E0 +mτH (encrypt) (l + 2t)τP̂ + l(E1 + E2) + τH (verify) |G2|+ (2m+ 1)|G1|+ |MSG|

(2l + 2)E1 + 2tE2 + τH (sign) +(l + t+ 2)|G1|+m
2

Our approach (3m+ 1)E0 + 2mET + τP (encrypt) (l + 2t)τP̂ + l(E1 + E2) + τH (verify) 2m|G0|+m|GT |+m
2 + |MSG|

(2l + 2)E1 + 2tE2 + τH (sign) +(l + t+ 2)|G1|

TABLE IV
COMPARISON OF COMPUTATION DURING READ AND WRITE BY USER AND CLOUD

Schemes Computation by user while write Computation by user while read Computation by cloud while write
[10] No write access mτP No write access
[11] No write access mτP No write access
[14] No write access 2mτP + τH +O(mh) No write access
[13] E1 + (2m+ 1)E0 +mτH (encrypt) (2m+ 1)τP (decrypt) (l + 2t)τP̂ + l(E1 + E2) + τH (verify)

(2l + 2)E1 + 2tE2 + τH (sign)
Our approach (3m+ 1)E0 + 2mET + τP (encrypt) 2mτP + τH +O(mh) (decrypt) (l + 2t)τP̂ + l(E1 + E2) + τH (verify)

(2l + 2)E1 + 2tE2 + τH (sign)

[6] G. Wroblewski, “General method of program code obfuscation,”
Ph.D. dissertation, Wroclaw University of Technology, 2002,
http://www.ouah.org/wobfuscation.pdf.

[7] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
Q. Liang, and B. S. Lee, “Trustcloud: A framework for accountability and
trust in cloud computing,” HP Technical Report HPL-2011-38. Available at
http://www.hpl.hp.com/techreports/2011/HPL-2011-38.html.

[8] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,” in 15th
National Computer Security Conference, 1992.

[9] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding attributes to role-based
access control,” IEEE Computer, vol. 43, no. 6, pp. 79–81, 2010.

[10] M. Li, S. Yu, K. Ren, and W. Lou, “Securing personal health records in cloud
computing: Patient-centric and fine-grained data access control in multi-owner
settings,” in SecureComm, 2010, pp. 89–106.

[11] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing with
attribute revocation,” in ACM ASIACCS, 2010, pp. 261–270.

[12] G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for
fine-grained access control in cloud storage services,” in ACM CCS, 2010,
pp. 735–737.

[13] F. Zhao, T. Nishide, and K. Sakurai, “Realizing fine-grained and flexible
access control to outsourced data with attribute-based cryptosystems,” in
ISPEC, ser. Lecture Notes in Computer Science, vol. 6672. Springer, 2011,
pp. 83–97.

[14] S. Ruj, A. Nayak, and I. Stojmenovic, “DACC: Distributed access control in
clouds,” in IEEE TrustCom, 2011.

[15] S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control
in social networks with efficient revocation,” in ACM ASIACCS, 2011.

[16] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in
ASIACRYPT, ser. Lecture Notes in Computer Science, vol. 2248. Springer,
2001, pp. 552–565.

[17] X. Boyen, “Mesh signatures,” in EUROCRYPT, ser. Lecture Notes in Com-
puter Science, vol. 4515. Springer, 2007, pp. 210–227.

[18] D. Chaum and E. van Heyst, “Group signatures,” in EUROCRYPT, 1991, pp.
257–265.

[19] H. K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-based signa-
tures: Achieving attribute-privacy and collusion-resistance,” IACR Cryptology
ePrint Archive, 2008.

[20] ——, “Attribute-based signatures,” in CT-RSA, ser. Lecture Notes in Com-
puter Science, vol. 6558. Springer, 2011, pp. 376–392.

[21] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in EUROCRYPT,
ser. Lecture Notes in Computer Science, vol. 3494. Springer, 2005, pp.
457–473.

[22] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” in ACM Conference on
Computer and Communications Security, 2006, pp. 89–98.

[23] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based
encryption,” in IEEE Symposium on Security and Privacy. 2007, pp. 321–
334.

[24] M. Chase, “Multi-authority attribute based encryption,” in TCC, ser. Lecture
Notes in Computer Science, vol. 4392. Springer, 2007, pp. 515–534.

[25] M. Chase and S. S. M. Chow, “Improving privacy and security in multi-
authority attribute-based encryption,” in ACM Conference on Computer and
Communications Security, 2009, pp. 121–130.

[26] A. B. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in
EUROCRYPT, ser. Lecture Notes in Computer Science, vol. 6632. Springer,
2011, pp. 568–588.

[27] “http://crypto.stanford.edu/pbc/.”
[28] “libfenc: The functional encryption library.

http://code.google.com/p/libfenc/.”
[29] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient access

to outsourced data,” in ACM Cloud Computing Security Workshop (CCSW),
2009.

563

